送向日葵代表什么意思| 真丝和桑蚕丝有什么区别| 上天的动物是什么生肖| 浑身酸疼是什么原因| 头孢是治疗什么的| 葡萄胎是什么原因造成的| 妇科和妇产科有什么区别| 腹痛拉肚子吃什么药| 雪莲果什么季节成熟| 浓郁是什么意思| 什么时候喝咖啡能减肥| 为什么要拔智齿| 减肥早餐吃什么好| 梦见巨蟒是什么预兆| 鹿五行属什么| 绿草如茵是什么生肖| 阿托品是什么药| 贲门不舒服有什么症状| 颈椎病用什么药膏| 数是什么意思| 纯磨玻璃结节是什么意思| 8.3是什么星座| 贩子是什么意思| 李健是清华什么专业| 男人吃什么补肾壮阳效果最好| 沙蒜是什么| 睾丸萎缩是什么原因| 十羊九不全是什么意思| 奶水不足吃什么下奶最快| 尿酸高什么症状| 额头和下巴长痘痘是什么原因| 沙眼衣原体是什么意思| 手痒是什么原因| 眼前的苟且是什么意思| 老鼠为什么怕猫| 什么东西越洗越脏脑筋急转弯| 大黄米是什么米| 男人为什么累| 送女朋友什么礼物| 小孩老是肚子疼是什么原因| 不可名状的名是什么意思| 甙是什么意思| 7月15日是什么日子| 葛根主治什么病| lookbook是什么意思| 清宫和人流有什么区别| 冠脉ct和冠脉造影有什么区别| 第一个月怀孕有什么反应| 乾隆是什么生肖| 脸上长红色的痘痘是什么原因| 金黄色葡萄球菌是什么菌| 泡腾片是干什么用的| 血常规可以查出什么病| 红面是什么面| 白塞病是什么病| 梦见要账是什么意思| 孕妇梦见摘桃子是什么意思| cbd是什么意思| 思春是什么意思啊| 什么龙什么虎| 骨密度t值是什么意思| fila是什么牌子| 曲率是什么意思| 叹气是什么意思| 音调是什么| 痛风买什么药| 1958属什么生肖| 化痰祛痰吃什么药| 鱼头和什么搭配煲汤好| 90年属什么| 肠易激综合征是什么原因造成的| ab和ab生的孩子是什么血型| 怀孕有什么特征| 86年属什么| 露水夫妻是什么意思| 急性肠胃炎吃什么| 睡觉时胳膊和手发麻是什么原因| 76年属什么生肖| 生化全项包括什么| 肚子痛看什么科| 世界上最难的数学题是什么| 打生长激素有什么危害和副作用| 梦见死人和棺材预示着什么| 黑眼圈挂什么科| 白痰吃什么药| 大牙什么时候换| us什么意思| 适得其反是什么意思| 孕妇吃海带有什么好处| 什么叫能量| pph是什么意思| 吃什么提高免疫力和增强体质| 已加一笔是什么字| 重字五行属什么| 热脸贴冷屁股是什么意思| 十五年是什么婚| 检查脂肪肝做什么检查| 功高震主是什么意思| 荷叶和什么搭配最减肥| 精神病吃什么药最好| 冒菜为什么叫冒菜| 耳朵轮廓痒是什么原因| 家庭出身填什么| 豆干炒什么好吃| 三奇贵人是什么意思| 菊花茶适合什么人喝| 微博是什么| 腌肉放什么调料| 本是同根生相煎何太急是什么意思| 香蕉像什么比喻句| 元宵节吃什么| 肚子胀屁多是什么原因| 翻车了是什么意思| 贼是什么意思| 崩溃是什么意思| 聚乙二醇是什么| 肝功能八项检查什么| 小寨附近有什么好玩的| nt和无创有什么区别| 什么克木| 阴道口瘙痒用什么药| 三湖慈鲷可以和什么鱼混养| 脚面疼是什么原因引起的| 苹果醋有什么好处| 哺乳期感冒了能吃什么药| 堃怎么读什么意思| 什么叫前庭功能| 人生的意义到底是什么| 罗非鱼长什么样| 二月出生是什么星座| 什么里什么间| 什么是扦插| 导盲犬一般是什么品种| 是什么样的感觉我不懂是什么歌| 嗯哼的爸爸叫什么| 塔罗牌能算什么| 眉毛脱落是什么原因造成的| 什么东西能美白| carrera手表什么牌子| 便秘吃什么药见效快| 孙悟空原名叫什么| 前什么后仰| 心脏增大吃什么药| 欠是什么意思| 小鹦鹉吃什么| 外科和内科有什么区别| 忌神是什么意思| 疯子是什么意思| 更是什么结构的字| 固本培元是什么意思| 安徽什么阳| 固体玉米糖浆是什么| 医师是什么意思| 严重失眠吃什么药| 什么是挠脚心| 冬字五行属什么| 什么的地板| 剁椒鱼头是什么菜系| 什么情况下需要做肠镜检查| 闷葫芦是什么意思| 孩子鼻子流鼻血是什么原因| 伟五行属什么| v4是什么意思| 口水分泌过多是什么原因| 肝血管瘤有什么症状| 内痔用什么药| 骨折补钙吃什么钙片好| 慈禧和溥仪是什么关系| 心肌劳损的症状是什么| 双氧水是什么东西| 小翅膀车标是什么车| 制动是什么| 蛇形分班是什么意思| 抽烟为什么会头晕| 线索细胞阳性什么意思| boby是什么意思| 糖尿病吃什么水果| 总是流鼻血是什么原因| gi值是什么| 俄罗斯人是什么人种| 天门冬氨酸氨基转移酶是什么| 如是我闻是什么意思| 父亲ab型母亲o型孩子什么血型| 一姐是什么意思| 离婚证是什么颜色| 雌二醇是什么意思| 尿蛋白高是什么病| 关羽姓什么| 50分贝相当于什么声音| 什么样的眼睛形容词| 业力是什么意思| 脖子疼挂什么科| 不景气是什么意思| 宫颈短是什么意思| 东方明珠什么时候亮灯| 吃什么可以治痔疮| toryburch什么牌子| mommy什么意思| 沈殿霞为什么地位高| 左撇子是什么意思| 狗狗胰腺炎有什么症状| 体悟是什么意思| 喝柠檬水有什么作用与功效| 做蛋糕用什么油| 过敏打什么针| 降结肠疼是什么原因| 骶髂关节在什么位置| 猪大肠炒什么好吃| 晚上吃什么不发胖| 滇红是什么茶| 修心是什么意思| 吃什么可以去脂肪肝| 梨状肌综合征挂什么科| 奶茶三兄弟是什么| 郁郁寡欢是什么意思| 鱼油不适合什么人吃| 球是什么生肖| 爱的意义是什么| 病理会诊是什么意思| cts是什么意思| yjs是什么意思| 喝什么饮料解酒最快最有效| 姐妹是什么生肖| 亚麻酸是什么东西| 7月份有什么节日| 1117什么星座| 正常白带是什么颜色| 6月26什么星座| 番茄红素有什么作用| 周传雄得了什么病| 男士去皱纹用什么好| 官鬼是什么意思| 什么是义齿| 风湿免疫科是什么病| elle中文叫什么| 怀孕日期是从什么时候开始算| 阴唇肥大有什么影响| 为什么拉的屎是墨绿色| 汆水是什么意思| 里脊肉是什么肉| 鸡精吃多了有什么危害| 立棍是什么意思| 饭后放屁多是什么原因| 龙抄手是什么| amh是什么检查项目| 家奴是什么生肖| 做梦梦到蟒蛇是什么征兆| 山竹有什么功效| 长征是什么意思| 吃什么补身体| 一般什么人容易得甲亢| opt是什么意思| 坚强后盾是什么意思| 慢性胃炎可以吃什么水果| 什么原因造成痫性发作| 什么是皮包公司| 氩气是什么气体| 地藏王菩萨保佑什么| 白内障有什么症状| 脸基尼是什么意思| 头痛吃什么药| 左耳朵发热代表什么预兆| 右眼睛跳是什么意思| 祯字五行属什么| 百度

专家解读一季度就业数据:实现"温暖开局"实属不易

(Redirected from Turing-complete)
百度 损毁的戒指还可以熔融再造,玉手镯碎了就恢复不了了。

In computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine[1][2] (devised by English mathematician and computer scientist Alan Turing). This means that this system is able to recognize or decode other data-manipulation rule sets. Turing completeness is used as a way to express the power of such a data-manipulation rule set. Virtually all programming languages today are Turing-complete.[a]

A related concept is that of Turing equivalence – two computers P and Q are called equivalent if P can simulate Q and Q can simulate P.[4] The Church–Turing thesis conjectures that any function whose values can be computed by an algorithm can be computed by a Turing machine, and therefore that if any real-world computer can simulate a Turing machine, it is Turing equivalent to a Turing machine. A universal Turing machine can be used to simulate any Turing machine and by extension the purely computational aspects of any possible real-world computer.[5][6]

To show that something is Turing-complete, it is enough to demonstrate that it can be used to simulate some Turing-complete system. No physical system can have infinite memory, but if the limitation of finite memory is ignored, most programming languages are otherwise Turing-complete.[7][8]

Non-mathematical usage

edit

In colloquial usage, the terms "Turing-complete" and "Turing-equivalent" are used to mean that any real-world general-purpose computer or computer language can approximately simulate the computational aspects of any other real-world general-purpose computer or computer language. In real life, this leads to the practical concepts of computing virtualization and emulation.[citation needed]

Real computers constructed so far can be functionally analyzed like a single-tape Turing machine (which uses a "tape" for memory); thus the associated mathematics can apply by abstracting their operation far enough. However, real computers have limited physical resources, so they are only linear bounded automaton complete. In contrast, the abstraction of a universal computer is defined as a device with a Turing-complete instruction set, infinite memory, and infinite available time.[citation needed]

Formal definitions

edit

In computability theory, several closely related terms are used to describe the computational power of a computational system (such as an abstract machine or programming language):

Turing completeness
A computational system that can compute every Turing-computable function is called Turing-complete (or Turing-powerful). Alternatively, such a system is one that can simulate a universal Turing machine.
Turing equivalence
A Turing-complete system is called Turing-equivalent if every function it can compute is also Turing-computable; i.e., it computes precisely the same class of functions as do Turing machines. Alternatively, a Turing-equivalent system is one that can simulate, and be simulated by, a universal Turing machine. (All known physically-implementable Turing-complete systems are Turing-equivalent, which adds support to the Church–Turing thesis.[citation needed])
(Computational) universality
A system is called universal with respect to a class of systems if it can compute every function computable by systems in that class (or can simulate each of those systems). Typically, the term 'universality' is tacitly used with respect to a Turing-complete class of systems. The term "weakly universal" is sometimes used to distinguish a system (e.g. a cellular automaton) whose universality is achieved only by modifying the standard definition of Turing machine so as to include input streams with infinitely many 1s.

History

edit

Turing completeness is significant in that every real-world design for a computing device can be simulated by a universal Turing machine. The Church–Turing thesis states that this is a law of mathematics – that a universal Turing machine can, in principle, perform any calculation that any other programmable computer can. This says nothing about the effort needed to write the program, or the time it may take for the machine to perform the calculation, or any abilities the machine may possess that have nothing to do with computation.

Charles Babbage's analytical engine (1830s) would have been the first Turing-complete machine if it had been built at the time it was designed. Babbage appreciated that the machine was capable of great feats of calculation, including primitive logical reasoning, but he did not appreciate that no other machine could do better.[citation needed] From the 1830s until the 1940s, mechanical calculating machines such as adders and multipliers were built and improved, but they could not perform a conditional branch and therefore were not Turing-complete.

In the late 19th century, Leopold Kronecker formulated notions of computability, defining primitive recursive functions. These functions can be calculated by rote computation, but they are not enough to make a universal computer, because the instructions that compute them do not allow for an infinite loop. In the early 20th century, David Hilbert led a program to axiomatize all of mathematics with precise axioms and precise logical rules of deduction that could be performed by a machine. Soon it became clear that a small set of deduction rules are enough to produce the consequences of any set of axioms. These rules were proved by Kurt G?del in 1930 to be enough to produce every theorem.

The actual notion of computation was isolated soon after, starting with G?del's incompleteness theorem. This theorem showed that axiom systems were limited when reasoning about the computation that deduces their theorems. Church and Turing independently demonstrated that Hilbert's Entscheidungsproblem (decision problem) was unsolvable,[9] thus identifying the computational core of the incompleteness theorem. This work, along with G?del's work on general recursive functions, established that there are sets of simple instructions, which, when put together, are able to produce any computation. The work of G?del showed that the notion of computation is essentially unique.

In 1941 Konrad Zuse completed the Z3 computer. Zuse was not familiar with Turing's work on computability at the time. In particular, the Z3 lacked dedicated facilities for a conditional jump, thereby precluding it from being Turing complete. However, in 1998, it was shown by Rojas that the Z3 is capable of simulating conditional jumps, and therefore Turing complete in theory. To do this, its tape program would have to be long enough to execute every possible path through both sides of every branch.[10]

The first computer capable of conditional branching in practice, and therefore Turing complete in practice, was the ENIAC in 1946. Zuse's Z4 computer was operational in 1945, but it did not support conditional branching until 1950.[11]

Computability theory

edit

Computability theory uses models of computation to analyze problems and determine whether they are computable and under what circumstances. The first result of computability theory is that there exist problems for which it is impossible to predict what a (Turing-complete) system will do over an arbitrarily long time.

The classic example is the halting problem: create an algorithm that takes as input a program in some Turing-complete language and some data to be fed to that program, and determines whether the program, operating on the input, will eventually stop or will continue forever. It is trivial to create an algorithm that can do this for some inputs, but impossible to do this in general. For any characteristic of the program's eventual output, it is impossible to determine whether this characteristic will hold.

This impossibility poses problems when analyzing real-world computer programs. For example, one cannot write a tool that entirely protects programmers from writing infinite loops or protects users from supplying input that would cause infinite loops.

One can instead limit a program to executing only for a fixed period of time (timeout) or limit the power of flow-control instructions (for example, providing only loops that iterate over the items of an existing array). However, another theorem shows that there are problems solvable by Turing-complete languages that cannot be solved by any language with only finite looping abilities (i.e., languages that guarantee that every program will eventually finish to a halt). So any such language is not Turing-complete. For example, a language in which programs are guaranteed to complete and halt cannot compute the computable function produced by Cantor's diagonal argument on all computable functions in that language.

Turing oracles

edit

A computer with access to an infinite tape of data may be more powerful than a Turing machine: for instance, the tape might contain the solution to the halting problem or some other Turing-undecidable problem. Such an infinite tape of data is called a Turing oracle. Even a Turing oracle with random data is not computable (with probability 1), since there are only countably many computations but uncountably many oracles. So a computer with a random Turing oracle can compute things that a Turing machine cannot.

Digital physics

edit

All known laws of physics have consequences that are computable by a series of approximations on a digital computer. A hypothesis called digital physics states that this is no accident because the universe itself is computable on a universal Turing machine. This would imply that no computer more powerful than a universal Turing machine can be built physically.[12]

Examples

edit

The computational systems (algebras, calculi) that are discussed as Turing-complete systems are those intended for studying theoretical computer science. They are intended to be as simple as possible, so that it would be easier to understand the limits of computation. Here are a few:

Most programming languages (their abstract models, maybe with some particular constructs that assume finite memory omitted), conventional and unconventional, are Turing-complete. This includes:

Some rewrite systems are Turing-complete.

Turing completeness is an abstract statement of ability, rather than a prescription of specific language features used to implement that ability. The features used to achieve Turing completeness can be quite different; Fortran systems would use loop constructs or possibly even goto statements to achieve repetition; Haskell and Prolog, lacking looping almost entirely, would use recursion. Most programming languages are describing computations on von Neumann architectures, which have memory (RAM and register) and a control unit. These two elements make this architecture Turing-complete. Even pure functional languages are Turing-complete.[15][16]

Turing completeness in declarative SQL is implemented through recursive common table expressions. Unsurprisingly, procedural extensions to SQL (PLSQL, etc.) are also Turing-complete. This illustrates one reason why relatively powerful non-Turing-complete languages are rare: the more powerful the language is initially, the more complex are the tasks to which it is applied and the sooner its lack of completeness becomes perceived as a drawback, encouraging its extension until it is Turing-complete.

The untyped lambda calculus is Turing-complete, but many typed lambda calculi, including System F, are not. The value of typed systems is based in their ability to represent most typical computer programs while detecting more errors.

Rule 110 and Conway's Game of Life, both cellular automata, are Turing-complete.

Unintentional Turing completeness

edit

Some software and video games are Turing-complete by accident, i.e. not by design.

Software:

Games:

Social media:

Computational languages:

Biology:

Non-Turing-complete languages

edit

Many computational languages exist that are not Turing-complete. One such example is the set of regular languages, which are generated by regular expressions and which are recognized by finite automata. A more powerful but still not Turing-complete extension of finite automata is the category of pushdown automata and context-free grammars, which are commonly used to generate parse trees in an initial stage of program compiling. Further examples include some of the early versions of the pixel shader languages embedded in Direct3D and OpenGL extensions.[citation needed]

In total functional programming languages, such as Charity and Epigram, all functions are total and must terminate. Charity uses a type system and control constructs based on category theory, whereas Epigram uses dependent types. The LOOP language is designed so that it computes only the functions that are primitive recursive. All of these compute proper subsets of the total computable functions, since the full set of total computable functions is not computably enumerable. Also, since all functions in these languages are total, algorithms for recursively enumerable sets cannot be written in these languages, in contrast with Turing machines.

Although (untyped) lambda calculus is Turing-complete, simply typed lambda calculus is not.

See also

edit

Footnotes

edit
  1. ^ Arguably, T[uring] C[omplete] computation is the only paradigm for the theory underpinning Computer Science...It has been argued that, at present, the dominant Computer Science paradigm may be characterised theoretically as TC computation, overarching programming languages, and practically as Computational Thinking, overarching programming methodologies.[3]

References

edit
  1. ^ Tom Stuart (2013). Understanding Computation: From Simple Machines to Impossible Programs. O'Reilly Media, Inc. p. 209. ISBN 978-1-4493-3011-8. Extract of page 209
  2. ^ Cristian S Calude (2024). To Halt Or Not To Halt? That Is The Question. World Scientific. p. 30. ISBN 978-981-12-3229-9. Extract of page 30
  3. ^ Michaelson, Greg (14 February 2020). "Programming Paradigms, Turing Completeness and Computational Thinking". The Art, Science, and Engineering of Programming. 4 (3). arXiv:2002.06178. doi:10.22152/programming-journal.org/2020/4/4.
  4. ^ G?ktürk ü?oluk; Sinan Kalkan (2012). Introduction to Programming Concepts with Case Studies in Python (illustrated ed.). Springer Science & Business Media. p. 13. ISBN 978-3-7091-1343-1. Extract of page 13
  5. ^ Ben Goertzel (2013). The Structure of Intelligence: A New Mathematical Model of Mind (illustrated ed.). Springer Science & Business Media. p. 13. ISBN 978-1-4612-4336-6. Extract of page 13
  6. ^ Alan Garnham (2017). Artificial Intelligence: An Introduction. Routledge. p. 164. ISBN 978-1-351-33786-1. Extract of page 164
  7. ^ Torben ?gidius Mogensen (2022). Programming Language Design and Implementation. Springer Nature. p. 6. ISBN 978-3-031-11806-7. Extract of page 6
  8. ^ John R. Woodward (2003). "Modularity in Genetic Programming". In Conor Ryan (ed.). Genetic Programming: 6th European Conference, EuroGP 2003, Essex, UK, April 14-16, 2003. Proceedings, Volume 6 (illustrated ed.). Springer Science & Business Media. p. 258. doi:10.1007/3-540-36599-0_23. ISBN 978-3-540-00971-9. Extract of page 258
  9. ^ Hodges, Andrew (1992) [1983], Alan Turing: The Enigma, London: Burnett Books, p. 111, ISBN 0-04-510060-8
  10. ^ Rojas, Raul (1998). "How to make Zuse's Z3 a universal computer". Annals of the History of Computing. 20 (3): 51–54. doi:10.1109/85.707574.
  11. ^ Rojas, Raúl (1 February 2014). "Konrad Zuse und der bedingte Sprung" [Konrad Zuse and the conditional jump]. Informatik-Spektrum (in German). 37 (1): 50–53. doi:10.1007/s00287-013-0717-9. ISSN 0170-6012. S2CID 1086397.
  12. ^ Schmidhuber, Jürgen (1997), Freksa, Christian; Jantzen, Matthias; Valk, Rüdiger (eds.), "A computer scientist's view of life, the universe, and everything", Foundations of Computer Science: Potential — Theory — Cognition, Lecture Notes in Computer Science, vol. 1337, Berlin, Heidelberg: Springer, pp. 201–208, arXiv:quant-ph/9904050, doi:10.1007/bfb0052088, ISBN 978-3-540-69640-7, S2CID 17830241, retrieved 23 May 2022
  13. ^ Dfetter; Breinbaas (8 August 2011). "Cyclic Tag System". PostgreSQL wiki. Retrieved 10 September 2014.
  14. ^ Lyons, Bob (30 March 2001). "Universal Turing Machine in XSLT". B2B Integration Solutions from Unidex. Archived from the original on 17 July 2011. Retrieved 5 July 2010.
  15. ^ Boyer, Robert S.; Moore, J. Strother (May 1983). A Mechanical Proof of the Turing Completeness of Pure Lisp (PDF) (Technical report). Institute for Computing Science, University of Texas at Austin. 37. Archived (PDF) from the original on 22 September 2017.
  16. ^ Rauber, Thomas; Rünger, Gudula (2013). Parallel programming: for multicore and cluster systems (2nd ed.). Springer. ISBN 9783642378010.
  17. ^ "Announcing LAMBDA: Turn Excel formulas into custom functions". TECHCOMMUNITY.MICROSOFT.COM. 3 December 2020. Retrieved 8 December 2020.
  18. ^ Cedotal, Andrew (16 April 2010). "Man Uses World's Most Difficult Computer Game to Create … A Working Turing Machine". The Mary Sue. Archived from the original on 27 June 2015. Retrieved 2 June 2015.
  19. ^ Plunkett, Luke (16 July 2019). "Cities: Skylines Map Becomes A Poop-Powered Computer". Kotaku. Retrieved 16 July 2019.
  20. ^ Caldwell, Brendan (20 November 2017). "Opus Magnum player makes an alchemical computer". Rock Paper Shotgun. Retrieved 23 September 2019.
  21. ^ Crider, Michael. "This 8-bit processor built in Minecraft can run its own games". PCWorld. Retrieved 21 July 2022.
  22. ^ Churchill, Alex; Biderman, Stella; Herrick, Austin (2020). Magic: The Gathering Is Turing Complete (PDF). 10th International Conference on Fun with Algorithms.
  23. ^ Ouellette, Jennifer (23 June 2019). "It's possible to build a Turing machine within Magic: The Gathering". Ars Technica. Retrieved 12 March 2023.
  24. ^ Kaye, Richard (31 May 2007). "Infinite versions of minesweeper are Turing complete" (PDF). Archived from the original (PDF) on 3 August 2016. Retrieved 8 July 2016.
  25. ^ "Habbo's Twitter thread on the implementation of a Turing machine inside the game". 9 November 2020. Retrieved 11 November 2020.
  26. ^ Meyers, Scott (Scott Douglas) (2005). Effective C++ : 55 specific ways to improve your programs and designs (3rd ed.). Upper Saddle River, NJ: Addison-Wesley. ISBN 0321334876. OCLC 60425273.
  27. ^ A 27th IOCCC Winner
    Carlini, Nicolas; Barresi, Antonio; Payer, Mathias; Wagner, David; Gross, Thomas R. (August 2015). "Control-flow bending: on the effectiveness of control-flow integrity". Proceedings of the 24th USENIX Conference on Security Symposium. pp. 161–176. ISBN 9781931971232.
  28. ^ Dabler, Ryan (23 September 2021). "TypeScript and Turing Completeness". ITNEXT. LINKIT. Retrieved 12 November 2022.
  29. ^ Dolan, Stephen. "mov is Turing-complete" (PDF). stedolan.net. Archived from the original (PDF) on 14 February 2021. Retrieved 9 May 2019.
  30. ^ Williams, Al (21 March 2021). "One Instruction To Rule Them All: C Compiler Emits Only MOV". Hackaday. Retrieved 23 October 2023.
  31. ^ Break Me00 The MoVfuscator Turning mov into a soul crushing RE nightmare Christopher Domas, 25 September 2015, retrieved 5 November 2022
  32. ^ Shah, Shalin; Wee, Jasmine; Song, Tianqi; Ceze, Luis; Strauss, Karin; Chen, Yuan-Jyue; Reif, John (4 May 2020). "Using Strand Displacing Polymerase To Program Chemical Reaction Networks". Journal of the American Chemical Society. 142 (21): 9587–9593. doi:10.1021/jacs.0c02240. ISSN 0002-7863. PMID 32364723. S2CID 218504535.
  33. ^ Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg (October 2013). "Programmable chemical controllers made from DNA". Nature Nanotechnology. 8 (10): 755–762. Bibcode:2013NatNa...8..755C. doi:10.1038/nnano.2013.189. ISSN 1748-3395. PMC 4150546. PMID 24077029.
  34. ^ Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David (15 December 2017). "Enzyme-free nucleic acid dynamical systems". Science. 358 (6369): eaal2052. doi:10.1126/science.aal2052. ISSN 0036-8075. PMID 29242317.
  35. ^ Soloveichik, David; Seelig, Georg; Winfree, Erik (23 March 2010). "DNA as a universal substrate for chemical kinetics". Proceedings of the National Academy of Sciences. 107 (12): 5393–5398. Bibcode:2010PNAS..107.5393S. doi:10.1073/pnas.0909380107. ISSN 0027-8424. PMC 2851759. PMID 20203007.
  36. ^ Shapiro, Ehud (7 December 1999). "A Mechanical Turing Machine: Blueprint for a Biomolecular Computer". Interface Focus. 2 (4). Weizmann Institute of Science: 497–503. doi:10.1098/rsfs.2011.0118. PMC 3363030. PMID 22649583. Archived from the original on 3 January 2009. Retrieved 13 August 2009.

Further reading

edit
edit
冷感冒吃什么药好得快 联手是什么意思 ba是什么 吃饱就犯困是什么原因 心脾两虚是什么意思
媾什么意思 唐僧姓什么 肝掌是什么样子 苹果手机用的什么系统 宝宝手心热是什么原因
什么拜之交 转氨酶高是什么意思 白羊座前面是什么星座 翕什么意思 区块链是什么
吃什么东西会误测怀孕 月经期吃什么水果 得了艾滋病会有什么症状 主动脉夹层什么意思 王不见王是什么意思
梦见小男孩拉屎是什么意思hcv8jop7ns9r.cn 奔跑吧什么时候播出hcv8jop7ns4r.cn 拉肚子能吃什么hcv9jop2ns3r.cn 虚火牙痛吃什么药效果最快hcv8jop9ns5r.cn 膘是什么意思hcv8jop3ns2r.cn
什么是埋线双眼皮hcv8jop9ns9r.cn 什么叫稽留流产hcv9jop5ns7r.cn 流浓黄鼻涕是什么原因hcv8jop5ns8r.cn 高糖是什么hcv8jop0ns8r.cn 三手烟是什么hcv9jop2ns6r.cn
今天是什么甲子hcv8jop5ns7r.cn 欢子真名叫什么hcv8jop8ns2r.cn 静待花开的前一句是什么hcv7jop6ns2r.cn 怀孕生气对胎儿有什么影响cl108k.com 杏干泡水喝有什么功效hcv7jop6ns8r.cn
什么是uvhcv9jop6ns6r.cn 嗣子是什么意思hcv8jop9ns5r.cn 看十全十美是什么生肖hcv9jop8ns3r.cn 殊胜是什么意思chuanglingweilai.com 胃疼屁多是什么原因hcv8jop9ns9r.cn
百度